Amici di Eluana, per servire la vita.

  • Aumenta dimensione caratteri
  • Dimensione caratteri predefinita
  • Diminuisci dimensione caratteri
Benvenuto nell'associazione Amici di Eluana, per servire la vita

NUOVO TEST RIVOLUZIONARIO PER VALUTARE LA "COSCIENZA" NEI PAZIENTI IN STATO VEGETATIVO

E-mail Stampa PDF

 

Martin M. Monti

Come si fa a sapere se una persona è cosciente? Questa domanda, dal sapore così squisitamente filosofico, è al centro di una delle condizioni più misteriose e discusse del cervello umano: lo stato vegetativo. Questo termine descrive una rara condizione in cui pazienti che emergono dal coma entrano in uno stato di veglia non cosciente. Senza una vera comprensione di cosa sia la coscienza nel cervello, però, è difficile stabilirne con certezza la presenza. Così, a oggi, un paziente è considerato cosciente se riesce a  produrre comportamenti volontari, come seguire una penna con gli occhi o muovere una mano a seguito di un comando. Se invece un paziente riesce a mostrare solamente comportamenti riflessi è considerato in stato vegetativo. Martin M. Monti il Sole 24 ore

Prof. S. Laureys

Il Coma Science Group (CRCyclotron, Università di Liège), guidato dal dottor Steven Laureys, ha sviluppato, insieme ai suoi partner di Londra, Ontario, (Canada) e Cambridge (Inghilterra ), un test portatile che permetterà una diagnosi semplice e poco costosa sui pazienti in stato vegetativo per valutare il loro livello di “coscienza”, anche se essi non abbiano i mezzi per esprimerla.

Prof. A. M. Owen

In uno studio, pubblicato sulla rivista medica «The Lancet» di questo mese, un gruppo della University of Western Ontario, in Canada, ha mostrato che è possibile vedere tracce di comportamento volontario nel cervello di pazienti considerati in stato vegetativo. «È incredibile – dice il professor Owen –. in alcuni casi pazienti che sembravano non rispondere a stimoli esterni erano in grado di segnalare che erano coscienti producendo volontariamente attivazioni cerebrali».

Sito: http://www.owenlab.uwo.ca/

 

Il desiderio di sviluppare questo semplice test di coscienza, dicono i ricercatori, fa seguito a precedenti ricerche svolte dal Coma Science Group, le quali hanno dimostrato nel corso del 2009, che il 40% dei cosiddetti pazienti in stato vegetativo hanno mantenuto un certo grado di coscienza.

Nel 2010 i ricercatori del Coma Science Group e i loro colleghi di Cambridge (Inghilterra) ha fatto un altro passo avanti fondamentale nel mostrare che era possibile comunicare con gli stati vegetativi attraverso la risonanza magnetica funzionale (fMRI).

Questa nuova scoperta è rivoluzionaria perché è possibile valutare la presenza di coscienza anche se il paziente non può muoversi (a causa di infortuni ai nervi, al midollo spinale o al cervello). Si va dunque a misurare direttamente l’attività della corteccia motoria usando l’elettroencefalografia (EEG). Questo significa che il test portatile può essere effettuato in tutti i centri di assistenza sanitaria (e anche a casa).

Un casco simile è in uso anche in Italia presso il Centro don Orione di Bergamo ( leggi l'articolo ), è stato chiamato “Elu1″, in omaggio ad Eluana Englaro e, al costo di 90€, aiuta a ricostruire un “dialogo” tra i pazienti e i loro cari.

Articoli Correlati:

 

 
 

Smart Aircrew Integrated Life Support System

E-mail Stampa PDF

"The computer seems to know more than anyone how well things are going, what has occurred, what is going to happen, and what to do about it", said AILSS engineering lead Cesar Gradilla.

In May 2004, The Naval Air Warfare Center Aircraft division (NAWCAD) contracted Dryden to test and evaluate a new system called SAILSS (Smart Aircrew Integrated Life Support System).

 

NASA F-18 preparing for a flight during
the Smart Aircrew Integrated
Life Support System tests.
(NASA photo)



SMART connotes intelligence. Smart systems know what to do and when to do it. Smart AILSS, or SAILSS, links the knowledge of aircrew medical state to the aircraft, and the computer not only knows what the aircraft is doing but how the aircrew is doing in response to those stresses imposed. But, what's unique is that the computer also controls the support systems helping the aircrew perform better, longer, and more confidently.

SAILSS monitors the pilot’s physiological data to determine state (e.g. pulse, breathing rates, oxygen, flow, brain wave and muscle activity) via sensors embedded in garments, mask and the helmet. The data collected is used to adjust the control of life support equipment, including the anti-G suit, positive pressure-breathing oxygen systems for G and high-altitude protection, and provides the capability to adjust the cooling flow to the ensemble.

The overall goal is to develop an integrated system that consists of a suite of sensors, signal processing, algorithms, control valves, and a computer. The current targeted sensors are: EEG and SpO2 in the helmet, EMG, ECG and RH in the sensor shirt, and respiration and mask flow/ pressure in the oxygen mask. The use of Near Infrared Spectroscopy (NIRS) will be investigated as an adjunct measure of cerebral oxygenation and consideration shall be made to incorporate this into the sensor suite within SAILSS. It is expected that arrays of sensors will be used to test and evaluate the most strategic sensor placement locations, albeit early in the program before refinement leads to a simpler approach. This is one of the major activities under SAILSS. Accordingly, the data acquisition and processing will be built to accommodate such approach. As this will be an iterative task the contractor expects full NAVY participation as the design and integration evolve.

The Navy Aircrew Integrated Life Support System (AILSS) team has just completed a first flight by NASA pilot Dana Purify of a state-of-the-art integrated computer system in an F/A-18 at the Dryden flight Research Center. As if taken from a chapter in a Star Wars episode, this marks the first time that a system of this kind has ever flown in an aircraft. The R2-D2 like system acquires real-time medical state data from the pilot and the aircraft and then controls the on-board systems based on the combined man and machine state and environment. First flight comes on the heels of two manned centrifuge evaluations in one year, demonstrating the closed loop computer control and real time data acquisition and decision making of the computer.

The First Flight occurred on July 1, 2004 and was a major milestone in the development of the state of the art integrated monitoring and control system technology that has been in work for over a decade.

Fonte: www.nasa.gov

Articoli Correlati....

 

Brain-to-brain verbal communication in humans achieved for the first time

E-mail Stampa PDF

Abstract

Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

 

You can read the full study online in the journal PLOS One.

 

Ultimo aggiornamento Domenica 07 Settembre 2014 11:17
 

I neuroni comunicano a distanza mediante campi elettrici

E-mail Stampa PDF

Osservato che dei campi energetici molto deboli, con valori di un millivolt per millimetro, modificano l'attivazione dei singoli neuroni aumentando il sincronismo, la spike-field coherence

I ricercatori ritenevano che i neuroni nel cervello comunicassero mediante collegamenti fisici chiamati sinapsi. Tuttavia, neuroscienziati finanziati dall'UE hanno trovato solide prove che i neuroni comunicano tra loro anche mediante deboli campi elettrici, una scoperta che ci potrebbe aiutare a capire come la biofisica crea la cognizione.

Lo studio, pubblicato nella rivista Nature Neuroscience, è stato in parte finanziato dal progetto EUSYNAPSE ("From molecules to networks: understanding synaptic physiology and pathology in the brain through mouse models"), che ha ricevuto 8 milioni di euro nell'ambito dell'area tematica "Scienze della vita, genomica e biotecnologie per la salute" del Sesto programma quadro (6° PQ) dell'UE.

L'autore principale, il dott. Costas Anastassiou, un borsista post dottorato presso il Californian Institute of Technology (Caltech) negli Stati Uniti, assieme ai suoi colleghi spiega come il cervello sia una complessa rete di singole cellule nervose, i neuroni, che usano segnali elettrici o chimici per comunicare tra loro.

Ogni volta che un impulso elettrico corre lungo la ramificazione di un neurone, un piccolo campo elettrico circonda quella cellula. Pochi neuroni sono come degli individui che parlano tra loro e hanno delle brevi conversazioni. Ma quando essi si attivano tutti assieme, l'effetto è quello del frastuono della folla durante una partita di calcio.

Quel "frastuono" è la somma di tutti i piccoli campi elettrici creati dall'attività neurale organizzata nel cervello. Anche se da molto tempo si riconosce che il cervello genera deboli campi elettrici in aggiunta all'attività elettrica di eccitazione delle cellule nervose, questi campi erano considerati epifenomeni, ovvero effetti collaterali superflui.

Ultimo aggiornamento Mercoledì 23 Novembre 2011 22:18
 


Pagina 2 di 6